1337 - The K Weakest Rows in a Matrix (Easy)
Problem Link
https://leetcode.com/problems/the-k-weakest-rows-in-a-matrix/
Problem Statement
You are given an m x n binary matrix mat of 1's (representing soldiers) and 0's (representing civilians). The soldiers are positioned in front of the civilians. That is, all the 1's will appear to the left of all the 0's in each row.
A row i is weaker than a row j if one of the following is true:
- The number of soldiers in row
iis less than the number of soldiers in rowj. - Both rows have the same number of soldiers and
i < j.
Return the indices of the k _ weakest rows in the matrix ordered from weakest to strongest_.
Example 1:
Input: mat =
[[1,1,0,0,0],
[1,1,1,1,0],
[1,0,0,0,0],
[1,1,0,0,0],
[1,1,1,1,1]],
k = 3
Output: [2,0,3]
Explanation:
The number of soldiers in each row is:
- Row 0: 2
- Row 1: 4
- Row 2: 1
- Row 3: 2
- Row 4: 5
The rows ordered from weakest to strongest are [2,0,3,1,4].
Example 2:
Input: mat =
[[1,0,0,0],
[1,1,1,1],
[1,0,0,0],
[1,0,0,0]],
k = 2
Output: [0,2]
Explanation:
The number of soldiers in each row is:
- Row 0: 1
- Row 1: 4
- Row 2: 1
- Row 3: 1
The rows ordered from weakest to strongest are [0,2,3,1].
Constraints:
m == mat.lengthn == mat[i].length2 <= n, m <= 1001 <= k <= mmatrix[i][j]is either 0 or 1.
Approach 1: Brute Force
Iterate each row to find out the number of soldiers, store the count with the row index. Sort it and take the first counts.
- C++
class Solution {
public:
vector<int> kWeakestRows(vector<vector<int>>& mat, int k) {
vector<int> ans;
vector<pair<int, int>> a;
for (int i = 0; i < mat.size(); i++) {
a.push_back({
// number of soldiers
accumulate(mat[i].begin(), mat[i].end(), 0),
// row index
i
});
}
sort(a.begin(), a.end());
// or use partial_sort
// partial_sort(a.begin(), a.begin() + k, a.end());
for (int i = 0; i < k; i++) {
// add the count to answer
ans.push_back(a[i].second);
}
return ans;
}
};
Approach 2: Heap
- Python
class Solution:
def kWeakestRows(self, mat: List[List[int]], k: int) -> List[int]:
rows = []
for i in range(len(mat)):
cnt = 0
for j in range(len(mat[i])):
if(mat[i][j] == 1):
cnt += 1
else:
break
heappush(rows, [-cnt, -i])
if len(rows) > k:
heappop(rows)
ans = []
while rows:
cnt, row = heappop(rows)
ans.append(-row)
ans.reverse()
return ans
Approach 3: Binary Search
Instead of searching linearly, we can use binary search to find out the number of soldiers. The rest is same as approach 1.
- C++
class Solution {
public:
int search(vector<int>& nums, int target) {
int n = nums.size(), l = 0, r = n;
while (l < r) {
int m = l + (r - l) / 2;
if (nums[m] == target) l = m + 1;
else r = m;
}
return l;
}
vector<int> kWeakestRows(vector<vector<int>>& mat, int k) {
vector<int> ans;
vector<pair<int, int>> a;
for (int i = 0; i < mat.size(); i++) {
a.push_back({
search(mat[i], 1),
// accumulate(mat[i].begin(), mat[i].end(), 0),
i
});
}
sort(a.begin(), a.end());
// or use partial_sort
// partial_sort(a.begin(), a.begin() + k, a.end());
for (int i = 0; i < k; i++) {
ans.push_back(a[i].second);
}
return ans;
}
};
Approach 4: Binary Search + Priority Queue
Instead of using a vector to store and sort, we use priority queue to handle the order.
- C++
- Kotlin
class Solution {
public:
int search(vector<int>& nums, int target) {
int n = nums.size(), l = 0, r = n;
while (l < r) {
int m = l + (r - l) / 2;
if (nums[m] == target) l = m + 1;
else r = m;
}
return l;
}
vector<int> kWeakestRows(vector<vector<int>>& mat, int k) {
vector<int> ans;
priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> pq;
for (int i = 0; i < mat.size(); i++) {
pq.push({
search(mat[i], 1),
i
});
}
for (int i = 0; i < k; i++) {
ans.push_back(pq.top().second);
pq.pop();
}
return ans;
}
};
class Solution {
fun kWeakestRows(mat: Array<IntArray>, k: Int): IntArray {
var ans = IntArray(k)
var pq = PriorityQueue<Pair<Int, Int>>(compareBy( {it.first }, { it.second }))
fun search(nums: IntArray, target: Int): Int {
val n = nums.size
var l = 0
var r = n
while (l < r) {
var m = (l + r) / 2
if (nums[m] == target) l = m + 1
else r = m
}
return l
}
for (i in mat.indices) {
pq.add(Pair(search(mat[i], 1), i))
}
for (i in 0 until k) {
ans[i] = pq.poll().second
}
return ans
}
}