1800 - Maximum Ascending Subarray Sum (Easy)
Problem Link
https://leetcode.com/problems/maximum-ascending-subarray-sum/
Problem Statement
Given an array of positive integers nums
, return the maximum possible sum of an ascending subarray in nums
.
A subarray is defined as a contiguous sequence of numbers in an array.
A subarray [numsl, numsl+1, ..., numsr-1, numsr]
is ascending if for all i
where l <= i < r
, numsi < numsi+1
. Note that a subarray of size 1
is ascending.
Example 1:
Input: nums = [10,20,30,5,10,50]
Output: 65
Explanation: [5,10,50] is the ascending subarray with the maximum sum of 65.
Example 2:
Input: nums = [10,20,30,40,50]
Output: 150
Explanation: [10,20,30,40,50] is the ascending subarray with the maximum sum of 150.
Example 3:
Input: nums = [12,17,15,13,10,11,12]
Output: 33
Explanation: [10,11,12] is the ascending subarray with the maximum sum of 33.
Constraints:
1 <= nums.length <= 100
1 <= nums[i] <= 100
Approach 1: One-Pass
Check each number starting from the second one to see if the current number is greater than the previous one or not. If so, add the current number to total sum and compare with the answer. Else we reset the sum as the current number.
class Solution {
public:
int maxAscendingSum(vector<int>& nums) {
int n = nums.size(), sum = nums[0], ans = nums[0];
for (int i = 1; i < n; i++) {
// check if it's ascending
if (nums[i] > nums[i - 1]) {
// it's ascending -> add this number to sum
sum += nums[i];
// update ans
ans = max(ans, sum);
} else {
// start a new ascending subarray
// reset sum to nums[i]
sum = nums[i];
}
}
return ans;
}
};