2421 - Number of Good Paths (Hard)
Problem Link
https://leetcode.com/problems/number-of-good-paths/
Problem Statement
There is a tree (i.e. a connected, undirected graph with no cycles) consisting of n
nodes numbered from 0
to n - 1
and exactly n - 1
edges.
You are given a 0-indexed integer array vals
of length n
where vals[i]
denotes the value of the ith
node. You are also given a 2D integer array edges
where edges[i] = [ai, bi]
denotes that there exists an undirected edge connecting nodes ai
and bi
.
A good path is a simple path that satisfies the following conditions:
- The starting node and the ending node have the same value.
- All nodes between the starting node and the ending node have values less than or equal to the starting node (i.e. the starting node's value should be the maximum value along the path).
Return the number of distinct good paths.
Note that a path and its reverse are counted as the same path. For example, 0 -> 1
is considered to be the same as 1 -> 0
. A single node is also considered as a valid path.
Example 1:
Input: vals = [1,3,2,1,3], edges = [[0,1],[0,2],[2,3],[2,4]]
Output: 6
Explanation: There are 5 good paths consisting of a single node.
There is 1 additional good path: 1 -> 0 -> 2 -> 4.
(The reverse path 4 -> 2 -> 0 -> 1 is treated as the same as 1 -> 0 -> 2 -> 4.)
Note that 0 -> 2 -> 3 is not a good path because vals[2] > vals[0].
Example 2:
Input: vals = [1,1,2,2,3], edges = [[0,1],[1,2],[2,3],[2,4]]
Output: 7
Explanation: There are 5 good paths consisting of a single node.
There are 2 additional good paths: 0 -> 1 and 2 -> 3.
Example 3:
Input: vals = [1], edges = []
Output: 1
Explanation: The tree consists of only one node, so there is one good path.
Constraints:
n == vals.length
1 <= n <= 3 * 10^4
0 <= vals[i] <= 105
edges.length == n - 1
edges[i].length == 2
0 <= ai, bi < n
ai != bi
edges
represents a valid tree.
Approach 1: DSU
- C++
- Java
- Python
- Rust
class Solution {
public:
// dsu
vector<int> root;
int get(int x) {
return x == root[x] ? x : (root[x] = get(root[x]));
}
int numberOfGoodPaths(vector<int>& vals, vector<vector<int>>& edges) {
// each node is a good path
int n = vals.size(), ans = n;
vector<int> cnt(n, 1);
root.resize(n);
// each element is in its own group initially
for (int i = 0; i < n; i++) root[i] = i;
// sort by vals
sort(edges.begin(), edges.end(), [&](const vector<int>& x, const vector<int>& y) {
return max(vals[x[0]], vals[x[1]]) < max(vals[y[0]], vals[y[1]]);
});
// iterate each edge
for (auto e : edges) {
int x = e[0], y = e[1];
// get the root of x
x = get(x);
// get the root of y
y = get(y);
// if their vals are same,
if (vals[x] == vals[y]) {
// then there would be cnt[x] * cnt[y] good paths
ans += cnt[x] * cnt[y];
// unite them
root[x] = y;
// add the count of x to that of y
cnt[y] += cnt[x];
} else if (vals[x] > vals[y]) {
// unite them
root[y] = x;
} else {
// unite them
root[x] = y;
}
}
return ans;
}
};
// [3,2]
// [1,2,3]
// 3 - 1 - 2 - 3
// 3 - 2 - 3
// 3 - 2 - 1 - 3
// 3 - 2 - 2 - 3
// 3 - 2 - 1 - 2 - 3
// 3 - 3
// good paths += cnt[x] * cnt[y]
class Solution {
// dsu
int[] root;
int[] cnt;
int get(int x) {
return x == root[x] ? x : (root[x] = get(root[x]));
}
public int numberOfGoodPaths(int[] vals, int[][] edges) {
// each node is a good path
int n = vals.length, ans = n;
cnt = new int[n];
root = new int[n];
// each element is in its own group initially
for (int i = 0; i < n; i++) {
root[i] = i;
cnt[i] = 1;
}
// sort by vals
List<int[]> edgesList = new ArrayList<>();
for(int i = 0; i < edges.length; i++) edgesList.add(edges[i]);
Collections.sort(edgesList, new Comparator<int[]>() {
public int compare(int[] x, int[] y) {
int a = Math.max(vals[x[0]], vals[x[1]]);
int b = Math.max(vals[y[0]], vals[y[1]]);
if(a < b) return -1;
else if(a > b) return 1;
else return 0;
}
});
// iterate each edge
for (int[] e : edgesList) {
int x = e[0], y = e[1];
// get the root of x
x = get(x);
// get the root of y
y = get(y);
// if their vals are same,
if (vals[x] == vals[y]) {
// then there would be cnt[x] * cnt[y] good paths
ans += cnt[x] * cnt[y];
// unite them
root[x] = y;
// add the count of x to that of y
cnt[y] += cnt[x];
} else if (vals[x] > vals[y]) {
// unite them
root[y] = x;
} else {
// unite them
root[x] = y;
}
}
return ans;
}
}
class Solution:
def numberOfGoodPaths(self, vals: List[int], edges: List[List[int]]) -> int:
n = len(vals)
# each node is a good path
ans = n
# sort by vals
edges.sort(key=lambda x: max(vals[x[0]], vals[x[1]]))
# dsu
cnt = [1] * n
root = [i for i in range(n)]
def get(x):
# recursively get the root element
if x == root[x]:
return x
else:
root[x] = get(root[x])
return root[x]
# iterate each edge
for x, y in edges:
# get the root of x
x = get(x)
# get the root of y
y = get(y)
# if their vals are same
if vals[x] == vals[y]:
# then there would be cnt[x] * cnt[y] good paths
ans += cnt[x] * cnt[y]
# unite them
root[x] = y
# add the count of x to that of y
cnt[y] += cnt[x]
elif vals[x] > vals[y]:
# unite them
root[y] = x
else:
# unite them
root[x] = y
return ans
use std::cmp::max;
impl Solution {
pub fn number_of_good_paths(vals: Vec<i32>, edges: Vec<Vec<i32>>) -> i32 {
let n = vals.len();
// each node is a good path
let mut ans = n as i32;
let mut edges = edges;
// sort by vals
edges.sort_by(|x, y| max(vals[x[0] as usize], vals[x[1] as usize]).cmp(&max(vals[y[0] as usize], vals[y[1] as usize])));
// dsu
let mut cnt = vec![1; n];
// each element is in its own group initially
let mut root = (0 .. n).collect();
fn get(x: usize, root: &mut Vec<usize>) -> usize {
if x == root[x] {
return x;
}
return get(root[x], root);
}
// iterate each edge
for e in edges {
// get the root of x
let x = get(e[0] as usize, &mut root);
// get the root of y
let y = get(e[1] as usize, &mut root);
// if their vals are same,
if vals[x] == vals[y] {
// then there would be cnt[x] * cnt[y] good paths
ans += cnt[x] as i32 * cnt[y] as i32;
// unite them
root[x] = y;
// add the count of x to that of y
cnt[y] += cnt[x];
} else if vals[x] > vals[y] {
// unite them
root[y] = x;
} else {
// unite them
root[x] = y;
}
}
ans
}
}