0523 - Continuous Subarray Sum (Medium)
Problem Link
https://leetcode.com/problems/continuous-subarray-sum/
Problem Statement
Given an integer array nums
and an integer k
, return true
if nums
has a continuous subarray of size at least two whose elements sum up to a multiple of k
, or false
otherwise.
An integer x
is a multiple of k
if there exists an integer n
such that x = n * k
. 0
is always a multiple of k
.
Example 1:
Input: nums = [23,2,4,6,7], k = 6
Output: true
Explanation: [2, 4] is a continuous subarray of size 2 whose elements sum up to 6.
Example 2:
Input: nums = [23,2,6,4,7], k = 6
Output: true
Explanation: [23, 2, 6, 4, 7] is an continuous subarray of size 5 whose elements sum up to 42.
42 is a multiple of 6 because 42 = 7 * 6 and 7 is an integer.
Example 3:
Input: nums = [23,2,6,4,7], k = 13
Output: false
Constraints:
1 <= nums.length <= 10^5
0 <= nums[i] <= 10^9
0 <= sum(nums[i]) <= 2^31 - 1
1 <= k <= 2^31 - 1
Approach 1: Hash + Prefix Sum
A continuous subarray sum can be represented as where is the prefix sum till index and is the prefix sum till index . We are looking for the subarray sum which can be divisible by . That means . We can further rewrite as and got .
Therefore, we can calculate the prefix sum and store its remainder to a hash map. If we see the same remainder in the hash map, we need to make sure that the length is at least . If so, we can return true.
class Solution {
public:
bool checkSubarraySum(vector<int>& nums, int k) {
int n = nums.size();
if (n == 1) return false;
// hash map to store the remainders
unordered_map<int, int> mod {{0, -1}};
int sum = 0, remainder;
for (int i = 0; i < n; i++) {
// prefix sum
sum += nums[i];
// calculate the remainder
remainder = sum % k;
if (mod.count(remainder)) {
// if remainder exists in hash map
// check the length
if (i - mod[remainder] >= 2) return true;
} else {
// mark the current index to hash map
mod[remainder] = i;
}
}
return false;
}
};