1143 - Longest Common Subsequence (Medium)
Problem Link
https://leetcode.com/problems/longest-common-subsequence
Problem Statement
Given two strings text1
and text2
, return the length of their longest common subsequence. If there is no common subsequence, return 0
.
A subsequence of a string is a new string generated from the original string with some characters (can be none) deleted without changing the relative order of the remaining characters.
- For example,
"ace"
is a subsequence of"abcde"
.
A common subsequence of two strings is a subsequence that is common to both strings.
Example 1:
Input: text1 = "abcde", text2 = "ace"
Output: 3
Explanation: The longest common subsequence is "ace" and its length is 3.
Example 2:
Input: text1 = "abc", text2 = "abc"
Output: 3
Explanation: The longest common subsequence is "abc" and its length is 3.
Example 3:
Input: text1 = "abc", text2 = "def"
Output: 0
Explanation: There is no such common subsequence, so the result is 0.
Constraints:
1 <= text1.length, text2.length <= 1000
text1
andtext2
consist of only lowercase English characters.
Approach 1: DP
LCS is a classic problem. Let be the LCS for string ends at index and string ends at index . If , then would be . Otherwise, we target the largest LCS if we skip one character from either or , i.e. .
- C++
- Java
- JavaScript
- Python
class Solution {
public:
int longestCommonSubsequence(string text1, string text2) {
int n = text1.size(), m = text2.size();
vector<vector<int>> dp(n + 1, vector<int>(m + 1));
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= m; j++) {
if(text1[i - 1] == text2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
}
}
}
return dp[n][m];
}
};
class Solution {
public int longestCommonSubsequence(String text1, String text2) {
int m = text1.length();
int n = text2.length();
// dp[][] array for storing records of every charcters
int[][] dp = new int[m + 1][n + 1];
for (int i = 0; i <= m; i++) {
for (int j = 0; j <= n; j++) {
if (i == 0 || j ==0) {
// setting first row and first column to be zero(initial readings)
dp[i][j] = 0;
} else if (text1.charAt(i - 1) == text2.charAt(j - 1)) {
/*
if match found, then store value of previous diagonal element(dp[i - 1][j - 1])
and increase the value by 1 i.e. a new character match is found
*/
dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
/*
otherwise, choose maximum of either previous element, either in
row(dp[i][j -1]) or column(dp[i][j - 1])
*/
dp[i][j] = Math.max(dp[i][j - 1],dp[i - 1][j]);
}
}
}
// dp[m][n] would hold the value of the LCS obtained
return dp[m][n];
}
}
/**
* @param {string} text1
* @param {string} text2
* @return {number}
*/
var longestCommonSubsequence = function(text1, text2) {
let n = text1.length;
let m = text2.length;
let dp = new Array(n + 1).fill(0).map(x => new Array(m + 1).fill(0));
for (i = 1; i <= n; i++) {
for (j = 1; j <= m; j++) {
if (text1[i - 1] != text2[j - 1]) {
dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
} else {
dp[i][j] = 1 + dp[i - 1][j - 1];
}
}
}
return dp[n][m];
};
class Solution:
def longestCommonSubsequence(self, text1: str, text2: str) -> int:
dp = [[0 for _ in range(len(text2) + 1)] for _ in range(len(text1) + 1)]
for i in range(len(text1) - 1, -1, -1):
for j in range(len(text2) - 1, -1, -1):
if text1[i] == text2[j]:
dp[i][j] = 1 + dp[i + 1][j + 1]
else:
dp[i][j] = max(dp[i + 1][j], dp[i][j + 1])
return dp[0][0]