0785 - Is Graph Bipartite? (Medium)
Problem Link
https://leetcode.com/problems/is-graph-bipartite
Problem Statement
There is an undirected graph with n
nodes, where each node is numbered between 0
and n - 1
. You are given a 2D array graph
, where graph[u]
is an array of nodes that node u
is adjacent to. More formally, for each v
in graph[u]
, there is an undirected edge between node u
and node v
. The graph has the following properties:
- There are no self-edges (
graph[u]
does not containu
). - There are no parallel edges (
graph[u]
does not contain duplicate values). - If
v
is ingraph[u]
, thenu
is ingraph[v]
(the graph is undirected). - The graph may not be connected, meaning there may be two nodes
u
andv
such that there is no path between them.
A graph is bipartite if the nodes can be partitioned into two independent sets A
and B
such that every edge in the graph connects a node in set A
and a node in set B
.
Return true
if and only if it is bipartite.
Example 1:
Input: graph = [[1,2,3],[0,2],[0,1,3],[0,2]]
Output: false
Explanation: There is no way to partition the nodes into two independent sets such that every edge connects a node in one and a node in the other.
Example 2:
Input: graph = [[1,3],[0,2],[1,3],[0,2]]
Output: true
Explanation: We can partition the nodes into two sets: {0, 2} and {1, 3}.
Constraints:
graph.length == n
1 <= n <= 100
0 <= graph[u].length < n
0 <= graph[u][i] <= n - 1
graph[u]
does not containu
.- All the values of
graph[u]
are unique. - If
graph[u]
containsv
, thengraph[v]
containsu
.
Approach 1: DSF Colouring
We can colour each set, says and . For example, in example 2, we can colour 2 to and 3 to . Therefore, we greedily colour them - if the current node is marked as , then all neighbours would be and so on.
class Solution {
public:
bool isBipartite(vector<vector<int>>& graph) {
int n = graph.size();
// {-1, 0, 1}
// -1: uncoloured
// 0: red
// 1: blue
vector<int> vis(n, -1);
function<int(int,int)> dfs = [&](int u, int colour) -> int {
// check if it is coloured or not
if (vis[u] != -1) {
// if the colour is same as previous one -> return 1
if (vis[u] == (color ^ 1)) return 1;
// the colour is correct -> return 0
else return 0;
}
// set the colour
vis[u] = colour;
// iterate each neighbours
for (auto& v : graph[u]) {
// the expected colour for neighbours would be colour ^ 1
// i.e. 0 -> 1 or 1 -> 0
if (dfs(v, colour ^ 1)) {
return 1;
}
}
return 0;
};
// iterate each node
for (int i = 0; i < n; i++) {
// check if it is coloured
if (vis[i] == -1) {
// if not, then colour it
// set 0 by default
if (dfs(i, 0)) {
// found neighbours also have the same colour
// then return 0
return 0;
}
}
}
return 1;
}
};
Approach 2: BFS Colouring
Same idea but using BFS.
class Solution {
public:
bool isBipartite(vector<vector<int>>& graph) {
int n = graph.size();
vector<int> vis(n, -1);
queue<int> q;
for (int i = 0; i < n; i++) {
if (vis[i] == -1) {
vis[i] = 0;
q.push(i);
while (!q.empty()) {
int u = q.front(); q.pop();
for (int v : graph[u]) {
if (vis[v] == -1) {
vis[v] = vis[u] ^ 1;
q.push(v);
} else if (vis[v] == vis[u]) {
return false;
}
}
}
}
}
return true;
}
};
Approach 3: Custom Template
is_bipartite Template
struct is_bipartite {
int V;
vector<vector<int>> adj;
vector<int> depth;
vector<bool> visited;
is_bipartite(int v = -1) {
if (v >= 0) init(v);
}
void init(int v) {
V = v;
adj.assign(V, {});
}
void add(int a, int b) {
adj[a].push_back(b);
adj[b].push_back(a);
}
vector<array<vector<int>, 2>> components;
bool dfs(int node, int parent) {
assert(!visited[node]);
visited[node] = true;
depth[node] = parent < 0 ? 0 : depth[parent] + 1;
components.back()[depth[node] % 2].push_back(node);
for (int h : adj[node])
if (h != parent) {
if (!visited[h] && !dfs(h, node)) return false;
if (depth[node] % 2 == depth[h] % 2) return false;
}
return true;
}
bool solve() {
depth.assign(V, -1);
visited.assign(V, false);
components = {};
for (int i = 0; i < V; i++)
if (!visited[i]) {
components.emplace_back();
if (!dfs(i, -1)) return false;
}
return true;
}
};
class Solution {
public:
bool isBipartite(vector<vector<int>>& graph) {
int n = graph.size();
// init is_bipartite
is_bipartite c(n);
// iterate input and build the edges
for (int i = 0; i < n; i++) {
int from = i;
for (auto& to : graph[from]) {
c.add(from, to);
c.add(to, from);
}
}
// call solve to get the answer
return c.solve();
}
};