1434 - Number of Ways to Wear Different Hats to Each Other (Hard)
Problem Statement
There are n
people and 40
types of hats labeled from 1
to 40
.
Given a 2D integer array hats
, where hats[i]
is a list of all hats preferred by the ith
person.
Return the number of ways that the n people wear different hats to each other.
Since the answer may be too large, return it modulo 109 + 7
.
Example 1:
Input: hats = [[3,4],[4,5],[5]]
Output: 1
Explanation: There is only one way to choose hats given the conditions.
First person choose hat 3, Second person choose hat 4 and last one hat 5.
Example 2:
Input: hats = [[3,5,1],[3,5]]
Output: 4
Explanation: There are 4 ways to choose hats:
(3,5), (5,3), (1,3) and (1,5)
Example 3:
Input: hats = [[1,2,3,4],[1,2,3,4],[1,2,3,4],[1,2,3,4]]
Output: 24
Explanation: Each person can choose hats labeled from 1 to 4.
Number of Permutations of (1,2,3,4) = 24.
Constraints:
n == hats.length
1 <= n <= 10
1 <= hats[i].length <= 40
1 <= hats[i][j] <= 40
hats[i]
contains a list of unique integers.
Approach 1: Dynamic Programming
class Solution {
public:
int n, M = 1e9 + 7;
int dfs(vector<vector<int>>& hatsToPeople, vector<vector<int>>& dp, int hat, int mask) {
// if the mask is able to reache the end state,
// i.e. all people can wear some hats, then return 1
if (mask == (1 << n) - 1) return 1;
// if the current hat is out of 40, return 0
if (hat > 40) return 0;
// if we calculated the result before, return it directly
if (dp[mask][hat] != -1) return dp[mask][hat];
// get number of ways if we skip this hat
long res = dfs(hatsToPeople, dp, hat + 1, mask);
// since the current hat can be assigned to different people
// we try all of them
for (auto& person: hatsToPeople[hat]) {
// if this person has been assigned with a hat, then skip it
if ((1 << person) & mask) continue;
// then we can assign this hat to this person
(res += dfs(hatsToPeople, dp, hat + 1, mask | (1 << person))) %= M;
}
// memoize the result
return dp[mask][hat] = res;
}
int numberWays(vector<vector<int>>& hats) {
// number of people
n = hats.size();
// for each hat, we map to different people
vector<vector<int>> hatsToPeople(41);
// iterate each person
for (int i = 0; i < n; i++) {
// iterate i-th person's preferred hats
for (auto &h : hats[i]) {
// assign hat h to person i
hatsToPeople[h].push_back(i);
}
}
// init dp
vector<vector<int>> dp(1 << n, vector<int>(41, -1));
// dfs
return dfs(hatsToPeople, dp, 1, 0);
}
};