Skip to main content

0210 - Course Schedule II (Medium)

Problem Statement

There are a total of numCourses courses you have to take, labeled from 0 to numCourses - 1. You are given an array prerequisites where prerequisites[i] = [ai, bi] indicates that you must take course bi first if you want to take course ai.

  • For example, the pair [0, 1], indicates that to take course 0 you have to first take course 1.

Return the ordering of courses you should take to finish all courses. If there are many valid answers, return any of them. If it is impossible to finish all courses, return an empty array.

Example 1:

Input: numCourses = 2, prerequisites = [[1,0]]
Output: [0,1]
Explanation: There are a total of 2 courses to take. To take course 1 you should have finished course 0. So the correct course order is [0,1].

Example 2:

Input: numCourses = 4, prerequisites = [[1,0],[2,0],[3,1],[3,2]]
Output: [0,2,1,3]
Explanation: There are a total of 4 courses to take. To take course 3 you should have finished both courses 1 and 2. Both courses 1 and 2 should be taken after you finished course 0.
So one correct course order is [0,1,2,3]. Another correct ordering is [0,2,1,3].

Example 3:

Input: numCourses = 1, prerequisites = []
Output: [0]

Constraints:

  • 1 <= numCourses <= 2000
  • 0 <= prerequisites.length <= numCourses * (numCourses - 1)
  • prerequisites[i].length == 2
  • 0 <= ai, bi < numCourses
  • ai != bi
  • All the pairs [ai, bi] are distinct.

Approach 1: Topological Sorting

Written by @wingkwong
// for topological sorting tutorial,
// see https://wingkwong.github.io/leetcode-the-hard-way/tutorials/graph-theory/topological-sorting
struct TopologicalSort {
int n;
vector<int> indegree;
vector<int> orders;
vector<vector<int>> G;
bool isTopologicalSorted = false;

TopologicalSort(vector<vector<int>>& g, vector<int>& in) {
G = g;
n = (int) G.size();
indegree = in;

int res = 0;
queue<int> q;
for(int i = 0; i < n; i++) {
if(indegree[i] == 0) {
q.push(i);
}
}
while(!q.empty()) {
auto u = q.front(); q.pop();
orders.push_back(u);
for(auto v : G[u]) {
if(--indegree[v] == 0) {
q.push(v);
}
}
res++;
}
isTopologicalSorted = res == n;
}
};

class Solution {
public:
vector<int> findOrder(int n, vector<vector<int>>& prerequisites) {
// define the graph
vector<vector<int>> g(n);
// define indegree
vector<int> indegree(n);
// build the graph
for(auto p : prerequisites) {
// we have to take p[1] in order to take p[0]
g[p[1]].push_back(p[0]);
// increase indegree by 1 for p[0]
indegree[p[0]]++;
}
// init topological sort
TopologicalSort ts(g, indegree);
// we can finish all courses only if we can topologically sort
// hence, return an empty array if it cannot be sorted
if (!ts.isTopologicalSorted) return {};
// else return the order
return ts.orders;
}
};