0974 - Subarray Sums Divisible by K (Medium)
Problem Statement
Given an integer array nums
and an integer k
, return the number of non-empty subarrays that have a sum divisible byk
.
A subarray is a contiguous part of an array.
Example 1:
Input: nums = [4,5,0,-2,-3,1], k = 5
Output: 7
Explanation: There are 7 subarrays with a sum divisible by k = 5:
[4, 5, 0, -2, -3, 1], [5], [5, 0], [5, 0, -2, -3], [0], [0, -2, -3], [-2, -3]
Example 2:
Input: nums = [5], k = 9
Output: 0
Constraints:
1 <= nums.length <= 3 * 10^4
-10^4 <= nums[i] <= 10^4
2 <= k <= 10^4
Approach 1: Hash Map + Prefix Sum
- C++
- Java
- Python
- Rust
class Solution {
public:
vector<int> generatePrefixSum(vector<int>& a) {
int n = a.size();
vector<int> pref(n);
pref[0] = a[0];
for (int i = 1; i < n; i++) pref[i] = pref[i - 1] + a[i];
return pref;
}
int subarraysDivByK(vector<int>& nums, int k) {
// generate prefix sum
vector<int> pref = generatePrefixSum(nums);
// store the modular cnt
vector<int> m(k);
// base value
m[0] = 1;
// init ans
int ans = 0;
// iterate each sum
for (auto& x : pref) {
// if x is negative, turn it to positive modular equivalent
if (x < 0) x = (x % k + k) % k;
// we need to find pairs such that (pref[j] - pref[i]) % k == 0
// hence, we look for pref[j] % k == pref[i] % k
// why ..?
// pref[j] = a * k + x
// pref[i] = b * k + y
// pref[j] - pref[i] = (a * k + x) - (b * k + y)
// pref[j] - pref[i] = k * (a - b) + (x - y)
// -> (pref[j] - pref[i]) % k == 0 if & only if (x - y) == 0
m[x % k]++;
}
// n choose 2
for (auto& x : m) ans += x * (x - 1) / 2;
return ans;
}
};
class Solution {
public int subarraysDivByK(int[] nums, int k) {
// generate prefix sum
int[] pref = new int[nums.length];
pref[0] = nums[0];
for (int i = 1; i < nums.length; i++) {
pref[i] = pref[i - 1] + nums[i];
}
// store the modular cnt
int[] m = new int[k];
// base value
m[0] = 1;
// init ans
int ans = 0;
// iterate each sum
for (int x : pref) {
// if x is negative, turn it to positive modular equivalent
if (x < 0) {
x = (x % k + k) % k;
}
// we need to find pairs such that (pref[j] - pref[i]) % k == 0
// hence, we look for pref[j] % k == pref[i] % k
// why ..?
// pref[j] = a * k + x
// pref[i] = b * k + y
// pref[j] - pref[i] = (a * k + x) - (b * k + y)
// pref[j] - pref[i] = k * (a - b) + (x - y)
// -> (pref[j] - pref[i]) % k == 0 if & only if (x - y) == 0
m[x % k]++;
}
// n choose 2
for (int x : m) {
ans += x * (x - 1) / 2;
}
return ans;
}
}
class Solution:
def subarraysDivByK(self, nums: List[int], k: int) -> int:
# generate prefix sum
pref = [0] * len(nums)
pref[0] = nums[0]
for i in range(1, len(nums)):
pref[i] = pref[i-1] + nums[i]
# store the modular cnt
m = [0] * k
# base value
m[0] = 1
# init ans
ans = 0
# iterate each sum
for x in pref:
# we don't need the following logic as Python handles it internally
# if x is negative, turn it to positive modular equivalent
# if x < 0:
# x = (x % k + k) % k
# we need to find pairs such that (pref[j] - pref[i]) % k == 0
# hence, we look for pref[j] % k == pref[i] % k
# why ..?
# pref[j] = a * k + x
# pref[i] = b * k + y
# pref[j] - pref[i] = (a * k + x) - (b * k + y)
# pref[j] - pref[i] = k * (a - b) + (x - y)
# -> (pref[j] - pref[i]) % k == 0 if & only if (x - y) == 0
m[x % k] += 1
# n choose 2
for x in m:
ans += x * (x - 1) // 2
return ans
impl Solution {
pub fn subarrays_div_by_k(nums: Vec<i32>, k: i32) -> i32 {
// generate prefix sum
let mut pref = vec![0; nums.len()];
pref[0] = nums[0];
for i in 1 .. nums.len() {
pref[i] = pref[i - 1] + nums[i];
}
// store the modular cnt
let mut m = vec![0; k as usize];
// base value
m[0] = 1;
// init ans
let mut ans = 0;
// iterate each sum
for x in pref.iter_mut() {
// if x is negative, turn it to positive modular equivalent
if *x < 0 {
*x = (*x % k + k) % k;
}
// we need to find pairs such that (pref[j] - pref[i]) % k == 0
// hence, we look for pref[j] % k == pref[i] % k
// why ..?
// pref[j] = a * k + x
// pref[i] = b * k + y
// pref[j] - pref[i] = (a * k + x) - (b * k + y)
// pref[j] - pref[i] = k * (a - b) + (x - y)
// -> (pref[j] - pref[i]) % k == 0 if & only if (x - y) == 0
m[(*x % k) as usize] += 1;
}
// n choose 2
for x in m {
ans += x * (x - 1) / 2;
}
ans
}
}