0992 - Subarrays with K Different Integers (Hard)
Problem Link
https://leetcode.com/problems/subarrays-with-k-different-integers/
Problem Statement
Given an integer array nums
and an integer k
, return the number of good subarrays of nums
.
A good array is an array where the number of different integers in that array is exactly k
.
- For example,
[1,2,3,1,2]
has3
different integers:1
,2
, and3
.
A subarray is a contiguous part of an array.
Example 1:
Input: nums = [1,2,1,2,3], k = 2
Output: 7
Explanation: Subarrays formed with exactly 2 different integers: [1,2], [2,1], [1,2], [2,3], [1,2,1], [2,1,2], [1,2,1,2]
Example 2:
Input: nums = [1,2,1,3,4], k = 3
Output: 3
Explanation: Subarrays formed with exactly 3 different integers: [1,2,1,3], [2,1,3], [1,3,4].
Constraints:
1 <= nums.length <= 2 * 10^4
1 <= nums[i], k <= nums.length
Approach 1: Sliding Window
- C++
class Solution {
public:
int atMost(vector<int>& nums, int k) {
// standard sliding window pattern
int n = nums.size(), i = 0, ans = 0;
unordered_map<int, int> m;
for (int j = 0; j < n; j++) {
// step 1: make the condition invalid
k -= !m[nums[j]]++;
// step 2: if the condition is failed,
// it means we need to shrink the window
// by adding k to make the condition valid
while(k < 0) k += !(--m[nums[i++]]);
// step 3: add the distance to ans
ans += j - i + 1;
}
return ans;
}
int subarraysWithKDistinct(vector<int>& nums, int k) {
// exactky k = at most k - at most (k - 1)
return atMost(nums, k) - atMost(nums, k - 1);
}
};