Skip to main content

0094 - Binary Tree Inorder Traversal (Easy)

Problem Statement

Given the root of a binary tree, return the inorder traversal of its nodes' values.

Example 1:

Input: root = [1,null,2,3]
Output: [1,3,2]

Example 2:

Input: root = []
Output: []

Example 3:

Input: root = [1]
Output: [1]

Constraints:

  • The number of nodes in the tree is in the range [0, 100].
  • -100 <= Node.val <= 100

Follow up: Recursive solution is trivial, could you do it iteratively?

Approach 1: Inorder Traversal

Written by @wingkwong
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/

// Time Complexity: O(N)
// Space Complexity: O(N)

// This is a standard in-order traversal problem, I'd suggest to learn pre-order and post-order as well.
// Here's a short tutorial if you're interested.
// https://wingkwong.github.io/leetcode-the-hard-way/tutorials/graph-theory/binary-tree
// then you may try the following problems
// 144. Binary Tree Preorder Traversal: https://leetcode.com/problems/binary-tree-preorder-traversal/
// 145. Binary Tree Postorder Traversal: https://leetcode.com/problems/binary-tree-postorder-traversal/

class Solution {
public:
vector<int> ans;
void inorder(TreeNode* node) {
if (node == NULL) return;
// traverse the left node
inorder(node->left);
// do something with node value here
ans.push_back(node->val);
// traverse the right node
inorder(node->right);
}

vector<int> inorderTraversal(TreeNode* root) {
inorder(root);
return ans;
}
};

Approach 2: Iterative

Written by @vigneshshiv
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
// Time complexity: O(n), where n - # of nodes in the tree
// Space complexity: O(n)
class Solution {
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> result = new LinkedList<>();
Stack<TreeNode> stack = new Stack<>();
while (root != null || !stack.isEmpty()) {
// Keep traversing to left and add it to stack till last
if (root != null) {
stack.push(root);
root = root.left;
} else {
// 1
// / \
// 2 3
// All left tree traversed and currently root is NULL
// 2 is added to result, Stack is only having 1
// If current node is 2, and it's popped out, 2's right is assigned to root which is NULL
// So in the next iteration root still be NULL.
// Stack top value 1 added to result and 1 popped out and 1's right 3 assigned to root.
result.add(stack.peek().val);
root = stack.pop().right;
}
}
return result;
}
}