0094 - Binary Tree Inorder Traversal (Easy)
Problem Statement
Given the root
of a binary tree, return the inorder traversal of its nodes' values.
Example 1:
Input: root = [1,null,2,3]
Output: [1,3,2]
Example 2:
Input: root = []
Output: []
Example 3:
Input: root = [1]
Output: [1]
Constraints:
- The number of nodes in the tree is in the range
[0, 100]
. -100 <= Node.val <= 100
Follow up: Recursive solution is trivial, could you do it iteratively?
Approach 1: Inorder Traversal
- C++
- Python
- Java
- JavaScript
- Rust
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
// Time Complexity: O(N)
// Space Complexity: O(N)
// This is a standard in-order traversal problem, I'd suggest to learn pre-order and post-order as well.
// Here's a short tutorial if you're interested.
// https://wingkwong.github.io/leetcode-the-hard-way/tutorials/graph-theory/binary-tree
// then you may try the following problems
// 144. Binary Tree Preorder Traversal: https://leetcode.com/problems/binary-tree-preorder-traversal/
// 145. Binary Tree Postorder Traversal: https://leetcode.com/problems/binary-tree-postorder-traversal/
class Solution {
public:
vector<int> ans;
void inorder(TreeNode* node) {
if (node == NULL) return;
// traverse the left node
inorder(node->left);
// do something with node value here
ans.push_back(node->val);
// traverse the right node
inorder(node->right);
}
vector<int> inorderTraversal(TreeNode* root) {
inorder(root);
return ans;
}
};
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def inorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
# left -> root -> right
if root is None: return []
return self.inorderTraversal(root.left) + [root.val] + self.inorderTraversal(root.right)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> result = new ArrayList<>();
inorder(root, result);
return result;
}
private void inorder(TreeNode node, List<Integer> result){
if (node == null) {
return;
}
inorder(node.left, result);
result.add(node.val);
inorder(node.right, result);
}
}
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {number[]}
*/
var inorderTraversal = function(root) {
let res = [];
function inorder(root) {
if (!root) {
return;
}
inorder(root.left);
res.push(root.val);
inorder(root.right);
}
inorder(root);
return res;
};
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std::rc::Rc;
use std::cell::RefCell;
type TreeRef = Rc<RefCell<TreeNode>>;
impl Solution {
// A typical recursive implementation...
pub fn inorder_traversal(root: Option<TreeRef>) -> Vec<i32> {
Self::walk(root.as_ref())
}
fn walk(node: Option<&TreeRef>) -> Vec<i32> {
node.map_or_else(|| Vec::new(), |tree_ref| {
let TreeNode { val: v, left: l, right: r } = &*tree_ref.borrow();
[Self::walk(l.as_ref()), vec![*v], Self::walk(r.as_ref())].concat()
})
}
}