Skip to main content

0144 - Binary Tree Preorder Traversal (Easy)

Problem Statement

Given the root of a binary tree, return the preorder traversal of its nodes' values.

Example 1:

Input: root = [1,null,2,3]
Output: [1,2,3]

Example 2:

Input: root = []
Output: []

Example 3:

Input: root = [1]
Output: [1]

Constraints:

  • The number of nodes in the tree is in the range [0, 100].
  • -100 <= Node.val <= 100

Follow up: Recursive solution is trivial, could you do it iteratively?

Approach 1: DFS - Pre-order traversal

Written by @wingkwong
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/

// Time Complexity: O(N)
// Space Complexity: O(N)

// This is a standard pre-order traversal problem, I'd suggest to learn in-order and post-order as well.
// Here's a short tutorial if you're interested.
// https://wingkwong.github.io/leetcode-the-hard-way/tutorials/graph-theory/binary-tree
// then you may try the following problems
// 94. Binary Tree Inorder Traversal: https://leetcode.com/problems/binary-tree-inorder-traversal/
// 145. Binary Tree Postorder Traversal: https://leetcode.com/problems/binary-tree-postorder-traversal/

class Solution {
public:
vector<int> ans;
void preorder(TreeNode* node) {
if (node == NULL) return;
// do something with node value here
ans.push_back(node->val);
// traverse the left node
preorder(node->left);
// traverse the right node
preorder(node->right);
}

vector<int> preorderTraversal(TreeNode* root) {
preorder(root);
return ans;
}
};

Approach 2: Iterative

Written by @vigneshshiv
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
// Time complexity: O(n), where n - # of nodes in the tree
// Space complexity: O(n)
class Solution {
public List<Integer> preorderTraversal(TreeNode root) {
List<Integer> result = new LinkedList<>();
Stack<TreeNode> stack = new Stack<>();
while (root != null) {
// Keep adding top and left node values, while traversing on left subtree
result.add(root.val);
// If Root has right subtree, add it to stack
if (root.right != null) {
stack.push(root.right);
}
// 1
// / \
// 2 3
// If 1 & 2 is added to result, Stack is only having 3
// If current node is 2, the 2's left is null,
// So Pops out stack top, i.e, current node's (2's) parent (1) right subtree
root = root.left;
if (root == null && !stack.isEmpty()) {
root = stack.pop();
}
}
return result;
}
}