0144 - Binary Tree Preorder Traversal (Easy)
Problem Statement
Given the root
of a binary tree, return the preorder traversal of its nodes' values.
Example 1:
Input: root = [1,null,2,3]
Output: [1,2,3]
Example 2:
Input: root = []
Output: []
Example 3:
Input: root = [1]
Output: [1]
Constraints:
- The number of nodes in the tree is in the range
[0, 100]
. -100 <= Node.val <= 100
Follow up: Recursive solution is trivial, could you do it iteratively?
Approach 1: DFS - Pre-order traversal
- C++
- Python
- Java
- JavaScript
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
// Time Complexity: O(N)
// Space Complexity: O(N)
// This is a standard pre-order traversal problem, I'd suggest to learn in-order and post-order as well.
// Here's a short tutorial if you're interested.
// https://wingkwong.github.io/leetcode-the-hard-way/tutorials/graph-theory/binary-tree
// then you may try the following problems
// 94. Binary Tree Inorder Traversal: https://leetcode.com/problems/binary-tree-inorder-traversal/
// 145. Binary Tree Postorder Traversal: https://leetcode.com/problems/binary-tree-postorder-traversal/
class Solution {
public:
vector<int> ans;
void preorder(TreeNode* node) {
if (node == NULL) return;
// do something with node value here
ans.push_back(node->val);
// traverse the left node
preorder(node->left);
// traverse the right node
preorder(node->right);
}
vector<int> preorderTraversal(TreeNode* root) {
preorder(root);
return ans;
}
};
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
# This is a standard pre-order traversal problem, I'd suggest to learn in-order and post-order as well.
# Here's a short tutorial if you're interested.
# https://wingkwong.github.io/leetcode-the-hard-way/tutorials/graph-theory/binary-tree
# then you may try the following problems
# 94. Binary Tree Inorder Traversal: https://leetcode.com/problems/binary-tree-inorder-traversal/
# 145. Binary Tree Postorder Traversal: https://leetcode.com/problems/binary-tree-postorder-traversal/
class Solution:
def preorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
# root -> left -> right
return [root.val] + self.preorderTraversal(root.left) + self.preorderTraversal(root.right) if root else []
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public static List<Integer> preorder(TreeNode root, List<Integer> ll) {
if (root == null) {
return ll;
}
ll.add(root.val);
preorder(root.left, ll);
preorder(root.right, ll);
return ll;
}
public static List<Integer> preorderTraversal(TreeNode root) {
List<Integer> ll = new LinkedList<Integer>();
ll = preorder(root, ll);
return ll;
}
}
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {number[]}
*/
var res = []
var preorderTraversal = function(root) {
let res = [];
function dfs(node) {
if (node == null) {
return;
}
res.push(node.val);
dfs(node.left);
dfs(node.right);
}
dfs(root);
return res;
};
Approach 2: Iterative
- Java
- Python
- C++
- JavaScript
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
// Time complexity: O(n), where n - # of nodes in the tree
// Space complexity: O(n)
class Solution {
public List<Integer> preorderTraversal(TreeNode root) {
List<Integer> result = new LinkedList<>();
Stack<TreeNode> stack = new Stack<>();
while (root != null) {
// Keep adding top and left node values, while traversing on left subtree
result.add(root.val);
// If Root has right subtree, add it to stack
if (root.right != null) {
stack.push(root.right);
}
// 1
// / \
// 2 3
// If 1 & 2 is added to result, Stack is only having 3
// If current node is 2, the 2's left is null,
// So Pops out stack top, i.e, current node's (2's) parent (1) right subtree
root = root.left;
if (root == null && !stack.isEmpty()) {
root = stack.pop();
}
}
return result;
}
}
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def preorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
stack, res = [root], []
while stack:
node = stack.pop()
if node:
res.append(node.val)
stack.append(node.right)
stack.append(node.left)
return res
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<int> preorderTraversal(TreeNode* root) {
stack<TreeNode*> st;
vector<int> ans;
st.push(root);
while (!st.empty()) {
TreeNode* node = st.top();
st.pop();
if (node) {
ans.push_back(node->val);
st.push(node->right);
st.push(node->left);
}
}
return ans;
}
};
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {number[]}
*/
var preorderTraversal = function(root) {
let stack = [], ans = [];
stack.push(root);
while (stack.length != 0) {
let node = stack[stack.length - 1];
stack.pop();
if (node != null) {
ans.push(node.val);
stack.push(node.right);
stack.push(node.left);
}
}
return ans;
};