0191 - Number of 1 Bits (Easy)
Problem Link
https://leetcode.com/problems/number-of-1-bits/
Problem Statement
Write a function that takes an unsigned integer and returns the number of '1' bits it has (also known as the Hamming weight).
Note:
- Note that in some languages, such as Java, there is no unsigned integer type. In this case, the input will be given as a signed integer type. It should not affect your implementation, as the integer's internal binary representation is the same, whether it is signed or unsigned.
- In Java, the compiler represents the signed integers using 2's complement notation. Therefore, in Example 3, the input represents the signed integer.
-3
.
Example 1:
Input: n = 00000000000000000000000000001011
Output: 3
Explanation: The input binary string 00000000000000000000000000001011 has a total of three '1' bits.
Example 2:
Input: n = 00000000000000000000000010000000
Output: 1
Explanation: The input binary string 00000000000000000000000010000000 has a total of one '1' bit.
Example 3:
Input: n = 11111111111111111111111111111101
Output: 31
Explanation: The input binary string 11111111111111111111111111111101 has a total of thirty one '1' bits.
Constraints:
- The input must be a binary string of length
32
.
Follow up: If this function is called many times, how would you optimize it?
Approach 1: Built-in Function
- C++
- Python
- Go
- Rust
- Java
- JavaScript
class Solution {
public:
int hammingWeight(uint32_t n) {
// or return bitset<32>(n).count();
return __builtin_popcount(n);
}
};
class Solution:
def hammingWeight(self, n: int) -> int:
return bin(n).count('1')
func hammingWeight(num uint32) int {
return bits.OnesCount32(num);
}
impl Solution {
pub fn hammingWeight (n: u32) -> i32 {
n.count_ones() as i32
}
}
public class Solution {
// you need to treat n as an unsigned value
public int hammingWeight(int n) {
return Integer.bitCount(n);
}
}
/**
* @param {number} n - a positive integer
* @return {number}
*/
var hammingWeight = function(n) {
return n.toString(2).split('1').length - 1
};
Approach 2: Bit Manipulation
We check each parity of teach bit. Increase by 1 if the bit is set.
- C++
- Java
- Python
- JavaScript
class Solution {
public:
int hammingWeight(uint32_t n) {
int ans = 0;
while (n) {
if (n & 1) ans++;
n >>= 1; // or n /= 2;
}
return ans;
}
};
public class Solution {
// you need to treat n as an unsigned value
//
public int hammingWeight(int n) {
int ones = 0;
// n > 0, fails to return the correct the answer because of Integer MAX_VALUE.
// Integer.MAX_VALUE + 1 is -2147483648, so it's not greater than 0, so n will not enter into loop
while (n != 0) {
ones += (n & 1);
// Why can't we use n >>= 1?
// Since n is 32 bit binary number, >> operator does shift by keeping signed bit position same as before
// Take a look at SO reference - https://stackoverflow.com/questions/2811319/difference-between-and
n >>>= 1;
}
return ones;
}
}
class Solution:
def hammingWeight(self, n: int) -> int:
res = 0
while n:
if (n & 1): res += 1
# same as --> n //= 2
n >>= 1
return res
/**
* @param {number} n - a positive integer
* @return {number}
*/
var hammingWeight = function(n) {
let res = 0;
while (n != 0) {
if (n & 1) res++;
n /= 2
}
return res;
};
Approach 3: n & (n - 1)
We can optimise approach 2. Instead of checking all digits, we can use n & (n - 1)
to remove the rightmost set bit.
n n n - 1 n & (n - 1)
-- ---- ---- -------
0 0000 0111 0000
1 0001 0000 0000
2 0010 0001 0000
3 0011 0010 0010
4 0100 0011 0000
5 0101 0100 0100
6 0110 0101 0100
7 0111 0110 0110
8 1000 0111 0000
9 1001 1000 1000
10 1010 1001 1000
11 1011 1010 1010
12 1100 1011 1000
13 1101 1100 1100
14 1110 1101 1100
15 1111 1110 1110
- C++
- Java
- Python
class Solution {
public:
int hammingWeight(uint32_t n) {
int ans = 0;
for (; n; n = n & (n - 1)) ans++;
return ans;
}
};
public class Solution {
// you need to treat n as an unsigned value
public int hammingWeight(int n) {
int ones = 0;
// Since n is 32 bit binary number, count 1's till that range
for (int i = 0; i < 32; i++) {
ones += (n & 1);
n >>= 1;
}
return ones;
}
}
class Solution:
def hammingWeight(self, n: int) -> int:
res = 0
while n:
n = n & (n - 1)
res += 1
return res